

Con. 6000-09.

(REVISED COURSE)

(3 Hours)

SP-8498

[Total Marks :100

www.campuskeeda.com

- N.B.: (1) Question No. 1 is **compulsory**.
 (2) Answer any four out of remaining **six** questions.
 (3) Make **suitable assumption**, if any.
 (4) Use of **steam table** is **permitted**.

1. Solve any four :—

20

- (a) What are Fourier and Biot Numbers ? What is physical significance of these numbers ?
 (b) Explain the term hydrodynamic and thermal boundary layer.
 (c) Explain non dimensional numbers used in convection heat transfer.
 (d) What is black body ? How does it differ from a gray body ?
 (e) In a quenching process, a copper plate 3 mm thick is heated up to 400 °C and then exposed to an ambient at 25 °C, with the convection coefficient of 28 W/m²K. Calculate the time required for the plate to reach the temperature of 50 °C. Take thermo physical properties as –
 $C = 380 \text{ J/KgK}$, $\rho = 8800 \text{ kg/m}^3$, $k = 385 \text{ W/mK}$.
 (f) What is heat exchanger ? Where are they used ?

2. (a) Show that the thermal resistance offered by a spherical wall of uniform k is given

8

$$\text{by } -\frac{r_o - r_i}{4\pi k r_i r_o}$$

- (b) A standard cast iron pipe (inner diameter = 50 mm and outer diameter = 55 mm) is insulated with magnesium insulation ($k = 0.02 \text{ W/mK}$). Temperature at the interface between the pipe and insulation is 300 °C. The allowable heat loss through the pipe is 600 W/m length of pipe and for the safety ; the temperature of the outside surface of insulation must not exceed 100 °C.

Determine :—

8

- (i) Minimum thickness of insulation required and
 (ii) The temperature of inside surface of the pipe assuming its thermal conductivity 20 W/mK.

- (c) In wire and cables, why the thickness of insulation is always kept at critical thickness ?

4

3. (a) For transient heat conduction, with negligible internal resistance, with usual notations, show that :—

8

$$\frac{\theta}{\theta_1} = \exp(-Bi Fo)$$

State the assumption clearly.

- (b) A plate fin of 10 mm thickness and 80 mm length is dissipating heat from a surface at 190 °C. The fin is exposed to air at 25 °C with a convection coefficient of 22 W/m² K. If thermal conductivity of the fin material is 200 W/mK. Consider 1 m width of fin —

12

- (i) Determine the heat dissipation.

- (ii) To increase the heat dissipation, the following two alternatives have been suggested with the same material volume.

- (1) Split the fin into two fins of 5 mm thickness each. Length 80 mm.
 (2) Single fin 5 mm thick and 160 mm long.

Which will be the better choice ?

The fins may be considered short with tip insulated.

[TURN OVER

4. (a) With the help of dimensional analysis method prove that for free convection :— 10
 $Nu = \text{constant} \times (Gr)^m \times (Pr)^n$
- (b) Air at 27 °C is flowing across a tube with a velocity of 25 m/s. The tube could 10
 be either a square of 5 cm side or a circular cylinder of 5 cm diameter. Compare
 the rate of heat transfer in each case, if the tube surface is at 127 °C.
 Use $Nu = C (Re)^n (Pr)^{1/3}$
 Where, $C = 0.027$, $n = 0.805$ for cylinder
 $C = 0.102$, $n = 0.675$ for square tube.
 Properties of air at 77 °C,
 $\rho = 0.955 \text{ kg/m}^3$, $K_{\text{air}} = 0.03 \text{ W/mK}$, $\nu = 20.92 \times 10^{-6}$, $C_p = 1.009 \text{ kJ/kgK}$.
5. (a) Define intensity of radiation. What is a solid angle ? What is its unit ? 4
 (b) State and explain the reciprocity theorem. Derive the equation $A_1 F_{12} = A_2 F_{21}$. 10
 (c) An enclosure measures 1.5 m × 1.75 m with a height of 2 m. Under steady 6
 state equilibrium conditions, the wall and ceiling are maintained at 525 K and
 floor at 400 K. Determine the net radiation to floor.
 ϵ_1 (emissivity of ceiling and wall) = 0.85
 ϵ_2 (emissivity of floor) = 0.75
 take $\sigma_b = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$.
6. (a) Explain the terms :— Effectiveness, NTU and LMTD. 6
 (b) For a heat exchanger, derive an equation of overall heat transfer coefficient 8
 considering fouling factor.
 (c) Exhaust gases ($C_p = 1.12 \text{ kJ/kgK}$) flowing through a tubular heat exchanger at 6
 the rate of 1200 kg/hr are cooled from 400 °C to 120 °C. The cooling is affected
 by water ($C_p = 4.18 \text{ kJ/kgK}$) that enters the system at 10 °C at the rate of 1500 kg/hr.
 If the overall heat transfer coefficient is 500 $\text{kJ/m}^2\text{-hr-K}$, what heat exchanger
 area is required to handle the load for :—
 (i) parallel flow and
 (ii) counter flow arrangement ?
7. (a) Explain equimolal counter diffusion and isothermal evaporation of water. 8
 (b) Air at 1 atm and 25 °C, containing small quantities of iodine, flows with a velocity 4
 of 6.2 m/s inside a 35 mm diameter tube. Calculate mass transfer coefficient
 for iodine. The thermo physical properties of air are :—
 $\nu = 15.5 \times 10^{-6} \text{ m}^2/\text{s}$, $D = 0.82 \times 10^{-5} \text{ m}^2/\text{s}$.
 Use, $Sh = 0.023 (Re)^{0.83} (Sc)^{0.44}$
- (c) Write short notes on any two of the following :— 8
 (i) Reynolds analogy
 (ii) Various modes of heat transfer
 (iii) Wien's displacement law and its use.